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The temperature mode of geothermal saturated strata is determined taking into account the 
thermal  currents  from the surrounding mass. 

In [1] an effective method was proposed for extracting geothermal heat based on the production of forced 
underground circulation by additional pumping of water into permeable water-saturated strata  (Fig. 1). The 
extraction of heat occurs in this case both due to displacement of the hot water initially contained in the s t ra -  
tum and by extraction of the heat from the surrounding rock strata. In [1] the heat exchange is calculated for 
a one-dimensional scheme of the flow of water from forcing wells to operational wells assuming constancy of 
the temperature  of the surrounding rock, which may lead to a considerable r i se  in the temperature of the 
water at the ot~put from the stratum. Solutions for certain cases of two-dimensional flow ignoring thermal 
currents  from the surrounding rock were obtained in [2, 3]. Below we describe an analytical method of calcu- 
lating the thermal  character is t ics  of a geothermal system for linear and ring batteries of wells (Fig. 2). 

When solving the problem we will make the following basic assumption: 1) Themot ionof the  water in the 
stratum has a two-dimensional character  - i.e., it is independent of the vert ical  coordinate z and is described 
by Darcy's law; 2) the rate  of interphase heat t ransfer  between the enclosing rock stratum and the water is in- 
finite; 3) the temperature across the stratum does not change, and the thermal conductivity in the longitudinal 
directions x and y is ignored both in the stratum and in the nonpermeable mass (the so-called Lover scheme); 
4) the physical propert ies  of the stratum, the rock, and the water are  constant. With these assumptions, the 
system of equations of filtering and steady-state heat t ransfer  in dimensionless form has the form 
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Fig. 1. Sketch showing the use of the stratum. 

Translated from Inzhenerno=Fizicheskii Zhurnal, Vol. 36, No. 3, pp. 434-439, March 1979. Original a r t i -  
cle submitted April 18, 1978. 
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" Fig. 2. Sketch showing the position of 
the wells. 

Equation (3) is the expression for the heat balance for the stratum written along the current lines, in 
which the coefficient c = pwCw/(mPwCw + (i - m)psC s) represents the ratio of the velocities of propagation 
of thermal convective and filtering fronts. To solve Eqs. (3) and (4) we will assume that the surrounding rock 
mass is unlimited and has the same initial temperature Tb while the temperature of the cooling water flow- 
ing through the pumping wells To does not change with time. Then the initial and boundary conditions for Eqs. 
(3) and (4) take the form 

P ( ? =  o) = I, ~ e ( ~ _ + ~ ) =  I, ~ ( ~ = o ) = o ,  0 ( s = s . ~  = o .  (5) 
1 

Hence, the system of equations (3) and (4) with condition (5) represent tim Lover problem [4] ~ formulatod 
for individual current lines between which there is no thermal interaction. The solution of this problem is 
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where _I - -  is the t ime of motion of the thermal front along the current line from the point where the u . . . .  

s i 

pumping well is situated (the input of water into the stratum) s i. 

From (6) we obtain an expression for the temperature of the water at the point of output from the s t ra-  
tum 

p% ' 

where T (~  = ~_~_ds is the time of motion of the thermal front from the pumping ~ the using well along 

'i 

current lines ~-- const. 

The mean calorimeter temperature at the exit from the strata is the average of expression (7) over all 
the current lines. Consequently, the problem of finding the water temperature at the exit from the s trata  r e -  
duces to calculating the time of motion of the thermal convection front along the different trajectories and 
subsequent summation over all the trajectories. 

To determine ~'(r we will use the following method [5]: the plane of flow W = ~ + i~ is eonformally 
mapped into the upper half plane Im~ ~ 0 in such a way that the pumping well is t ransferred to the origin of  
coordinates and the operating well to infinity. In this way the isobars are converted into semicircles and the 
current lines into a beam of straight lines emerging from the origin of coordinates, 

and the evaluation of the eurvilinear integral T(~-) in the W plane is replaced by an integral along the straight 
current lines in the plane 

-- = T rd . (9) 

Note that to simplify the results,  as a consequence of the smallness of the radius of a well compared 
with the distance between the weUs~ t{ae ope~iugs at the entrance and exit of the water in the stratum are as -  
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sumed to be points. The small e r ror  in ,r(X) introduced by this assumption can easily be estimated by chang- 
Lug the limits of integration in (9). 

The mean calorimetric water temperature at the exit from the stratum 0* is given by the expression 

~r 

0 Pe s Vr--  �9 (Z) ) (10) 

where X*(t-) is the angle from the inner part o2 which to th(~ working well the water in the stratum is admitted 
(it is determined as a function inverse to T(X)). 

The f irst  term in (10) describes the change in the temperature due to the nonequflibrium of the motion 
of the thermal convective front from the pumping well to the operational well, and the second describes the 
heat inflow from the rock mass. 

We will f i rs t  consider the operation of a linear battery of alternately pumping and working wells (Fig. 
2a). A filtering cell is a strip of width l with an equipowered source and a drain with a discharge ~Q/2. The 
mapping has the form 

IV= ~ In I + ~  (Ii) -y-s-g-" 

Taking (11) into account, we obtain from (9) 

~C sin 2 Z " 

For a ring battery of radius R consisting of one pumping and n operating wells (or n pumping and one operat- 
ing well) (Fig. 2b), the filtering cell is a sector with a span of 2v/n and a �9 and drain of discharge ~Q/n. 
Mapping gives the formula 

whence 

(ico)~ ) '  1" (13) 

| - -gt  

~'(X)= n~C J (1 - l - 2 r c o s 2 z + r  2] (1-1-2rcos2~+r2) ~ 
0 

(14) 

For the special case when n = 2, we have from (14) 

~ (1 - -  cos 2X) ( 1 5 )  
(X) = 2C sin S 2Z 

�9 As the third example, we will consider a system of linear batteries of alternately forcing and operating 
wells (Fig. 2c). Mapping of the filtering cell, representing a rectangle of dimensions l • m, is carr ied  out by 
an elliptic integral  of the f i rs t  kind [6]: 

s 

w = AF(~, n) = A V ( f - -  ~ ) ( 1 - - n ~ )  ' (16) 
0 

where the constants A and n are found from the relations 

A ---- I/K(] / 1 -- nZ), K (V  I - nZ)lK(n) = 2 V " ~ [  

(K(n) is the complete elliptic integral of the f i rs t  Idnd). 

Substituting (16) into (9) we obtain 

~(Z) = nA~ i 
rdr 

---C--,. ~ (1 '~  2t~cos 2X 3- r'),(1 -F 2n~r~cos2Z"+ n'r') 
o 

�9 ( 1 7 )  

As n~/1 --~ 0% expression (17) reduces to the solution for a sha le  battery (12). 

Figure 3 shows the results  of a calculation of the water temperature at the exit from the stratum caleu- 
lated from Eq. (10) for a single linear battery (the dashed lines), a ring battery with n = 2 (the continuous 
lines), and a system of linear batteries (the dash-dot  lines), when ~'(X) is given by Eqs. (12), (15), and (17), 
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Fig. 3. Var ia t ion  of the t e m p e r a t u r e  
of the wa te r  a t  the exi t  f r o m  the 
s t ra tum:  1) e = 0; 2) e =  0.125, Q = 
1000m3/h, t o = 3.5 y e a r s ;  3) e = 
0.395, Q = 100 m3/h, t o = 35 days;  
4) e = 0, 5) e = 0.125; Q = 1000 
mS/h, to = 4 y e a r s ;  6) e = 0.395, 
Q = 190 m3/h,  to = 40 days ;  7) e = 
0; 8) e = 0 .125 ,  Q =  1000mS/h ,  to=  
5 days;  9) e = 0 . 3 9 5 ,  Q = 100 mS/h,  
t o = 50 days.  

respec t ive ly .  We chose as  the t ime sca le  the t ime  of mot ion of the t h e r m a l  f ront  along the sho r t e s t  c u r r e n t  
line, i .e . ,  t -=  t / t0 ,  where  t o = 2h/27(X = 0)/Q. The calculat ions were  ca r r i ed  out for  d i f ferent  d i scha rges  
under the following conditions: h = 100 m,  l = r = m = 300 m,  pmCm = 3 "106 J / m 3 - d e g ,  mpwC w + (1 - m ) p s C  s 
3.2 �9 106 j / m 3 . d e g ,  and Xm = 2.5 W / m .  deg. Lines  1, 4, and 7 were  cons t ruc ted  ignoring the conductive flow of 
heat  f rom the surrounding rock  m a s s .  The contribution of the t h e r m a l  flow f rom the rock  m a s s  to the change 
in t e m p e r a t u r e  a t  the exi t  f r o m  the s t r a tum i n c r e a s e s  as  the p a r a m e t e r  e = ~ / ' / P e s , ~ ' C  i n c r e a s e s ,  c h a r a c -  
t e r i z ing  the r a t io  of the conductive to the convective heat  f luxes.  In addition, an inc rease  in the number  of 
wel ls  in the s t r a t um  leads to a s ha rpe r  d rop  in t e m p e r a t u r e ,  which is due to the reduct ion in the vo lume of the 
s t r a t um and of the surrounding rock  m a s s  p r o c e s s e d  by  a single well. 

Note that  the method desc r ibed  above for  calculat ing the heat  exchange in geo the rmal  s t r a t a  can  be  ap -  
plied not only to  the ca se s  cons idered  but to other s y s t e m s  of wel l  a r r angemen t s .  

N O T A T I O N  

x, y, z,  coordina tes ;  t, t ime;  Ux and Uy, veloci ty  components;  p, p r e s s u r e ;  ~, c u r r e n t  function; Ts ,  
s t r a t u m  t e m p e r a t u r e ;  Tm,  t e m p e r a t u r e  of the r o c k  m a s s ;  h, s t r a tum thickness ;  Q, well  d i scharge ;  /~, coef -  
f icient  o f  dynamic  v i scos i ty ;  k, pe rmeab i l i ty ;  m,  poros i ty ;  psCs, densi ty  and heat  capaci ty  of the s t r a t u m  
rock;  pwCw, wa te r  densi ty  and heat  capaci ty;  Pm, [ m ,  Xm, densi ty ,  heat  capaci ty ,  and t h e r m a l  conductivity of 
the r o c k  m a s s ;  u and s ,  d imens ion less  ve loc i ty  and length of the a r c  along the cu r r en t  l ine.  The d imens ion-  
l ess  var iab les  a re  ~ = x /h ;  ~ = y /h ;  ~ = z /h ;  T = Qt/h3; ~x = uxh2/Q; ~y = uyh~/Q; ~ = pkh/~Q; ~" = ~h/Q; 

= l /h ;  "R= R/h;  0 = { T s - - W o ) / ( W i - T o ) ;  T = (Tm - T o ) / ( T  i - -To) ;  ~(~ < 0) = 0; 7/(~> 0) = 1; P e m  = 
Q p m C m / h X m  , and p e  s = Q(mpwC w + (1 - m )  p s C s ) / h k m  is the Pec le t  number  for  the r o c k  m a s s  and s t r a tum.  
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